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ON SIMULATING LARGE EARTHQUAKES BY GREEN’S-FUNCTION
ADDITION OF SMALLER EARTHQUAKES

William B. Joyner
David M. Boore
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Abstract.  Simulation of ground motion from large
earthquakes has been attempted by a number of authors
using small earthquakes (subevents) as Green’s functions
and summing them, generally in a random way. We present
a simple model for the random summation of subevents
to illustrate how seismic scaling relations can be used to
constrain methods of summation. In the model # iden-
tical subevents are added together with their start times
randomly distributed over the source duration T and their
waveforms scaled by a factor x. The subevents can be con-
sidered to be distributed on a fault with later start times
at progressively greater distances from the focus, simulat-
ing the irregular propagation of a coherent rupture front.
For simplicity the distance between source and observer
is assumed large compared to the source dimensions of the
simulated event. By proper choice of 7 and x the spectrum
of the simulated event deduced from these assumptions can
be made to conform at both low- and high-frequency lim-
its to any arbitrary seismic scaling law. For the w-squared
model with similarity (that is, with constant My f3 scal-
ing, where fq is the corner frequency), the required values
are n = (MO/MO,)‘/3 and x = (MO/MOQ)_I/S, where M
is moment of the simulated event and Mj, is the moment
of the subevent. The spectra resulting from other choices
of n and & will not conform at both high and low fre-
quency. If n is determined by the ratio of the rupture area
of the simulated event to that of the subevent and x = 1,
the simulated spectrum will conform at high frequency to
the w-squared model with similarity, but not at low fre-
quency. Because the high-frequency part of the spectrum is
generally the important part for engineering applications,
however, this choice of values for n and x may be satis-
factory in many cases. If # is determined by the ratio of
the moment of the simulated event to that of the subevent
and x = 1, the simulated spectrum will conform at low
frequency to the w-squared model with similarity, but not
at high frequency. Interestingly, the high-frequency scal-
ing implied by this latter choice of n and & corresponds to
an w-squared model with constant Mp fg —a scaling law
proposed by Nuttli, although questioned recently by Haar
and others.

Simple scaling with & equal to unity and 5 equal to the
moment ratio would work if the high-frequency spectral

decay were w5 instead of w2, Just the required de-

cay is exhibited by the stochastic source model recently
proposed by Joyner, if the dislocation-time function is de-
convolved out of the spectrum. Simulated motions derived
from such source models could be used as subevents rather
than recorded motions as is usually done. This strategy is
a promising approach to simulation of ground motion from
an extended rupture.

Introduction

The lack of near-source recordings of ground motion in
large earthquakes has generated interest in methods of sim-
ulating such motion for purposes of engineering design.
Simulation of ground motion from large earthquakes re-
quires consideration of source, path, and local site effects.
Numerous authors have attempted to remove the uncer-
tainty in the path and site effects by using small earth-
quakes as Green’s functions in the simulation of ground
motion from larger events [Hartzell, 1978, 1982; Wu, 1978;
Kanamori, 1979; Hadley and Helmberger, 1980; Mikumo
et al., 1981; Irikura and Muramatu, 1982; Irikura, 1983;
Coats et al., 1984; Houston and Kanamori, 1984; Imagawa
et al., 1984; Munguid and Brune, 1984; Hutchings, 1985].
The small earthquakes (henceforth called subevents) ide-
ally are located near the hypothetical source and recorded
at the site, but these ideal conditions are commonly re-
laxed. The method of Green’s-function addition not only
has the advantage of incorporating wave-propagation ef-
fects and local site effects, it also is capable of incorporat-
ing the effects of rupture propagation and source-station
geometry. In particular the method should model, at least
in part, the effect of directivity. Users of the method gen-
erally postulate some distribution of subevents over a fault
plane and sum them in accordance with an assumed geom-
etry of rupture propagation. Some authors associate with
each element of the fault plane a series of subevents spread
out in time. Imagawa et al. [1984] filtered subevent records
by a filter designed to correct for the difference in rise time
between subevent and simulated event.

In this paper we are not advocating the method of
Green’s-function addition or demonstrating it. Our sole
purpose is to show how, in the practical situation, seismic
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scaling considerations can be used to derive constraints
useful in applying the method.

The heterogeneity of earthquake source processes is a
crucial issue in the application of the method. Irikura
[1983] used the method to simulate ground motion from a
shallow magnitude 6.7 earthquake on the assumption of a
rupture uniform in both rupture velocity and total disloca-
tion. The resulting motion was deficient at high frequency
relative to the observed ground motion, leading to the con-
clusion that the real rupture was not uniform and forcing a
modification of the summing method to enhance the high
frequency. Imagawa et al. [1984] attempted to model a dif-
ferent earthquake as a uniform rupture and also came to
the conclusion that the rupture was not uniform. Authors
other than Irikura have generally included randomness of
some sort in their methods for summing subevents. This
randomness may be thought to represent a degree of ran-
dom heterogeneity characteristic of large earthquakes. It
also performs an important function in preventing spurious
periodicities in the simulated motion resulting from sum-
ming over uniform grids in space or over points equally
spaced in time. Irikura [1983], who did not use any ran-
domness in his summation, relied on a special smoothing
technique to eliminate spurious periodicities.

In the spirit of the original concept of the subevent as
a Green’s function, the corner frequency of the subevent
should be higher than any frequency of interest in the sim-
ulated motion. In that case the subevent record will be a
true impulse response, and the spectrum of the simulated
event will depend on how the subevents are distributed
over the fault and in time. The quality of the simulation
will depend, accordingly, upon how well the distribution of
slip is represented over the fault and in time, in particular,
how well the degree and kind of heterogeneity of faulting is
represented. In the general case, however, because of lim-
ited dynamic range in the subevent records, it may not be
possible to use subevents so small that their corner frequen-
cies are higher than any frequency of engineering interest
and still maintain the desired bandwidth in the simulated
motion. If we wanted to keep the subevent corner frequen-
cies above 3 Hz, we could use subevents no larger than
a moment magnitude of about 4; if we wanted to keep
the subevent corner frequencies above 10 Hz, we could use
subevents no larger than a moment magnitude of about
3. Those who have done simulations by the method of
Green’s-function addition have generally used much larger
subevents, a practice which suggests that it is generally
necessary to consider frequencies above the subevent cor-
ner.

It is important to note that the effect of directivity will
not be correctly modeled at frequencies above the subevent
corner frequency unless the angle between the rupture di-
rection and the source-to-station vector is the same for the
simulated event as the subevent.

The necessity to consider frequencies above the subevent
corner introduces a strong constraint on methods for ran-
dom summation of subevents, a constraint that, as far as
we are aware, has not been explicitly discussed in the lit-

erature. At very low frequency the subevent spectra will
add coherently and the spectral values of the simulated
event will be equal to the sum of the subevent values. At
sufficiently high frequency the subevent spectra will add
incoherently and the spectral values of the simulated event
will be equal to the square root of the sum of squares of the
subevent values. These rules in combination with seismic
scaling relations form the constraint on methods of ran-
dom summation. We present here a very simple method of
random summation, and use it to illustrate the constraint.

Spectrum of the Simulated Event

In the method 1 subevents are added together with their
start times distributed randomly with uniform probability
over the source duration T and their waveforms scaled by
a factor x. Although randomly distributed in time the
subevents can be considered to be distributed on a fault
with later start times at progressively greater distances
from the focus, simulating the irregular propagation of a
coherent rupture front. For most of the discussion the
waveforms of the subevents are assumed identical. This
not only simplifies the discussion, it also corresponds to
the practical situation in which generally many times as
many subevents are needed as there are small earthquake
records available. The case in which the subevents are
not identical is considered in the Appendix. For simplic-
ity the distance between source and observer is assumed
large compared to the source dimensions of the simulated
event. With these assumptions the source spectrum of the
simulated event averaged over the ensemble is shown to be

S(w) = {n [1 +(n-1) Sii—(;/%/;a] }1/2 &S.(w), (1)

where S.(w) is the subevent source spectrum. The deriva-
tion is given in the Appendix.

At sufficiently high frequencies the shape of the spec-
trum described by (1) is controlled by the subevent spec-
trum. Below the corner frequency of the subevent, the
subevent spectrum is flat, and the shape of the simulated
event spectrum depends upon the quantity in braces in (1).
At low frequencies the simulated event spectrum is flat, and
at intermediate frequencies it has a trend proportional to
w™1, a consequence of the uniform probability distribution
assumed for the random summation, which was a choice
made for the sake of simplicity. Other rates of falloff at
intermediate frequencies could be obtained by appropri-
ate choice of distribution function. The intersection of the
low- and intermediate-frequency trends is at a frequency
f = fo/m, where fo = 1/T. We will use the low- and
high-frequency limits to constrain methods of summation.

At low frequency (1) simplifies to

S(w) = n&S, (w),

w—0

; (2)



and at sufficiently high frequency the second term in square
brackets is negligible, and

S(w) = ynrSe(w),

w — . (3)

This is just what one should expect; the spectra add coher-
ently at low frequency and incoherently at high frequency.
The “sufficiently high” frequency f(= w/2n) needed for
(3) to be applicable is given approximately by

T > /n/n. (4)

Thus we have

LF «x nk
HF x k.

where LF and HF are shorthand for the ratios between
the spectrum of the simulated event and the subevent at
low and high frequency, respectively.

The Constraint

We are now in a position to use the scaling laws of earth-
quake spectra to determine n and x. We emphasize the
w-squared model [Aki, 1967; Brune, 1970]. The stochastic
version of the w-squared model proposed by Hanks and
McGuire [1981] has been successful in predicting measures
of ground motion over a broad range in moment magni-
tude [Hanks and McGuire, 1981; Boore, 1983; Hanks and
Boore, 1984]. For the sake of generality, however, we de-
rive the equations determining n and « for arbitrary scal-
ing laws. If the displacement spectrum falls off at high
frequency as f~7, then the high-frequency trend can be
written as Mo(fo/f)?, where My is the seismic moment
and fo is the corner frequency defined as the frequency at
which the low-frequency and high-frequency trends inter-
sect. If the scaling conforms to constant Mg fg, then spec-

tral values at high frequency are proportional to Mé"’/ﬁ,

and HF = (MO/MOC)I"’/ﬁ, where M;, is the subevent
moment. Noting that LF = My /Mo, and applying a little

algebra gives
(1)
MO:

(1)
MOe '

For the w-squared model v = 2. If similarity holds, M, fg
is constant for all earthquakes, and # = 3. So, for the
w-squared model with similarity

n

(5)

K
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_ (MO >4/3
m= MO:

<M0 )“/3
K = .
MO:

Notice that the exponent in the equation for x is negative.
The subevent records must be reduced in amplitude, and
correspondingly larger numbers of them added together
in order to satisfy the high-frequency and low-frequency
requirements simultaneously.

The high-frequency approximation given by (3) is valid
above a frequency fi determined by the inequality (4).
Since fo = 1/T,

fn/fo=n/m.

For the w-squared model with similarity (6) can be used
to obtain

fn_ 1 ( Mo )2/3 (7)
fo T \ M, '
With similarity Mof$ is constant and
f M, 1/3
LA 8
fO <MO¢> ’ ( )

where f, is the subevent corner frequency. Equations (7)
and (8) imply that f, = f. for a moment magnitude dif-
ference of approximately one unit between simulated event
and subevent. For larger differences f; is greater than f,,
and for smaller diferences it is less.

Figure 1 shows the spectrum (light line) of a simulated
event, using the values of n and «k given above, for the case
in which the difference in moment magnitude between the
simulated event and the subevent is one unit. The subevent
spectrum is assumed to be

1

W= gy

[Brune, 1970]. The heavy line on Figure 1 shows, for com-
parision, the spectrum that would result from scaling the
subevent spectrum up to the moment of the simulated
event in accordance with similarity, that is, with Mofg
held constant. The value of f. in Figure 1is v/10f,, and
the value of f, is about 3fy, approximately the same,
as predicted above. Figure 2 shows the same compari-
son for the case in which the difference in moment mag-
nitude between the simulated event and the subevent is
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Fig. 1. Spectrum (light line) of the simulated event for a
difference of one unit in moment magnitude between sim-
ulated event and subevent, compared to the w-squared
spectrum (heavy line) obtained as described in the text.
Spectra are normalized to the low-frequency level.

two units. For the case shown in Figure 2, f. = 10fp,
and (4) is satisfied at frequencies above about 30f,. The
simulated spectra in Figures 1 and 2 are constrained only
at the low-frequency and high-frequency limits but are
within a factor of two of the target spectra over most of
the intermediate-frequency range, indicating that even this
oversimplified method of summation gives reasonably satis-
factory simulations at intermediate frequencies, at least as
long as the magnitude difference between simulated event
and subevent does not exceed the two units illustrated in
Figure 2. One might hope that more realistic methods of
summation would give even better results.

Similarity breaks down for earthquakes larger than that
value of moment which corresponds to rupture of the entire
width of the seismogenic zone. Joyner [1984] has proposed
a scaling law applicable to such events. Consistency with
that law can be attained by choosing 1 and x such that
LF is equal to Mp/Mp, and HF is equal to the square
root of the ratio of rupture areas.

Applications

The approach used to develop (6) can be applied to show
the consequences of other methods of summation. Suppose
that n is determined by the ratio of the rupture area of the
simulated event to that of the subevent and k = 1. In an
w-squared model with similarity, rupture area A « My’",
so

LF = (MQ/M0¢)2/3
HF = (Mp/M,,)"/3.

These relations satisfy the high-frequency but not the low-
frequency constraint. The high-frequency part of the spec-
trum is generally the important part for engineering ap-
plications, however, and this method will give satisfactory
results in many cases.

Suppose that n is determined by the ratio of the moment
of the simulated event to that of the subevent and x = 1.
Then n = My/Mg. , and
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Fig. 2. Spectrum (light line) of the simulated event for
a difference of two units in moment magnitude between
simulated event and subevent, compared to the w-squared
spectrum (heavy line) obtained as described in the text.
Spectra are normalized to the low-frequency level.



LF = MO/M0¢
HF = (Mo/Mm)‘/z-

This satisfies the low-frequency constraint but not the high-
frequency constraint demanded by the w-squared model
with similarity. Interestingly, the HF scalmg, combined
with the high-frequency dependence of M, f2 for an w-
squared model implies that

Mo, f& = constant,

a scaling law proposed by Nuttli {1983}, although ques-
tioned recently by Haar et al. {1984] and by Atkinson and
Boore [1985].

The method of summation proposed by Hadley and
Helmberger [1980] is not consistent with the condition ex-
pressed by (6). They divide the fault rupture into n ele-
ments with n chosen to approximate the ratio of rupture
areas between simulated event and subevent. For every
element they sum randomly N subevents, each multiplied
by &/N, where € (Ao in their terminology) is chosen so
as to give the correct moment for the simulated event and
N is the ratio of the rise time of the simulated event to
the rise time of the subevent. If similarity holds, then

M,
()
MOe
If the subevents are equal in moment, then

M,
MOe * (9)

né =

Since the total number of events n = n N,

1 M, 4/3
ﬂ_E(MOe) ’

and since the factor « by which the subevents are multi-

plied is ¢/N,
M, "3
~= € <M0¢ ) '

These expressions are equivalent to (6) if and only if £ =1,
but by (9) € = 1 only if n is equal to the moment ratio
between simulated event and subevent. Thus, the method
of summation proposed by Hadley and Helmberger [1980]
would agree with (6) if n were equal to the moment ratio.
They proposed, however, that n be chosen as the ratio of
rupture areas.
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Simulated Motions as Subevents

The discussion in this paper has been framed in terms
of using recorded motions for the subevents, but stochas-
tic simulations could be used just as well. With meth-
ods such as those described by Boore [1983] and Joyner
[1984], stochastic simulations could be generated repre-
senting point sources, and motions from a number of point
sources could be added together to represent motion from a
fault rupture too large to be treated as a point source. Such
an approach may be a particularly efficient way of simulat-
ing an extended rupture. One possible source model to be
used in the generation of the time series for each subevent
is that of Joyner [1984], who proposed a kinematic source
model in which the spectrum, with the dislocation-time
function deconvolved out, has a high-frequency decay of
SV, If similarity is assumed, (5) leads to « equal to
unity and n equal to the moment ratio. The dislocation-
time function could be included by convolution, as the last
step in the simulation process, after the subevent time se-
ries had been summed. The concept of using subevents
with the dislocation-time function deconvolved out is phys-
ically appealing, and the simple addition of subevents using
a scale factor of unity has an attractive simplicity.

Appendix

To form the simulated event we take n subevents with
spectra S.j(w). The subevents all have the same moment,
but the spectra are not necessarily identical. We multiply
the subevents by x and add them together with delay times
t; distributed with uniform probability between 0 and T.
The expected value of the squared modulus spectrum is

s%wr=E{(zjmaxww—“”)-(Zjns;c»a”")}
i=1 k=1

where E is the expected value operator and * denotes the
complex conjugate. S.; and S.x are independent of t;
and tg, and, for § # k, t; is independent of t;. The
probability that ¢; takes on a given value is

dt;
T 0<t; LT
0 otherwise.

i=1

T
y@:Z/%wE%wﬁﬂﬂ
T

K*E {Se;(w)Sx(w)}-

1 it; | d
Y /’e_.m, TJ gty G
=1 k=1 0 0

LI

Performing the integrations gives
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§*(w) = 1x2S2(w)

sin®(wT/2)

+’7(’7 - l) (U)T/Z)z

K?E{S.;(w)S5(w)}, (A1)

where S?(w) is the expected value of the squared modulus
of the subevent spectrum. If the subevents are identical,
then

sin® (wT'/2)

Sz(w)='1 l+(’7_l) (wT/z)z

k?S3(w). (A2)

Taking the square root of (A2) gives (1) of the text. If
the subevents are not identical then the spectrum of the
simulated event depends upon the statistical properties of
the random process represented by the subevent spectra.
In the low-frequency limit the subevents must be identi-
cal because they have the same moment, and so the low-
frequency limit of (Al) is the same as that of (A2). At
sufficiently high frequency the second term in (A1) can be
neglected, and the high-frequency limit of (A1) is the same
as that of (A2)
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