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Abstract 
 

Most digital accelerograph recordings are plagued by long-period drifts, best seen in the 

velocity and displacement time series obtained from integration of the acceleration time 

series. These drifts often result in velocity values that are nonzero near the end of the record.  

This is clearly unphysical and can lead to inaccurate estimates of peak ground displacement 

and long-period spectral response.   The source of the long-period noise seems to be 

variations in the acceleration baseline in many cases.  These variations could be due to true 

ground motion (tilting and rotation, as well as local permanent ground deformation), 

instrumental effects, or analog-to-digital conversion.   Very often the trends in velocity are 

well approximated by a linear trend after the strong shaking subsides. The linearity of the 

trend in velocity implies that no variations in the baseline could have occurred after the onset 

of linearity in the velocity time series.   This observation, combined with the lack of any 

trends in the pre-event motion, allows us to compute the time interval in which any baseline 

variations could occur.   We then use several models of the variations in a Monte Carlo 

procedure to derive a suite of baseline-corrected accelerations for each noise model, using 

records from the 1999 Chi-Chi earthquake and several earthquakes in Turkey.  Comparisons 

of the mean values of the peak ground displacements, spectral displacements, and residual 

displacements computed from these corrected accelerations for the different noise models can 

be used as a guide to the accuracy of the baseline corrections.   For many of the records 

considered here the mean values are similar for each noise model, giving confidence in the 

estimation of the mean values.   The dispersion of the ground-motion measures increases with 

period and is noise-model dependent.   The dispersion of inelastic spectra is greater than the 

elastic spectra at short periods, but approaches that of the elastic spectra at longer periods.  

The elastic spectra from the most basic processing, in which only the pre-event mean is 

removed from the acceleration time series, do not diverge from the baseline-corrected spectra 

until periods of 10 to 20 s or more for the records studied here, implying that for many 

engineering purposes elastic spectra can be used from records with no baseline correction or 



 2

filtering. 

 

 

 

Introduction 
 

Reliable long-period spectral information has become an important issue in earthquake 

engineering and engineering seismology.  The information derived from long-period ground 

motion can be used in understanding the source- and path-related specific features of far- and 

near-fault ground motions (e.g. Jousset and Douglas, 2007; Somerville, 2003; Spudich and 

Chiou, 2008; Somerville et al., 1997); a detailed seismological overview of long-period 

ground motions is given in Koketsu and Miyake (2008).  In structural engineering reliable 

long-period information is required for robust deformation-demand estimates of structural 

systems, particularly with the increased interest in displacement-based design and the 

emergence of nonlinear structural-response analyses (ATC, 2005).  In recognition of the need 

for ground-motion estimations at longer periods, recent ground-motion prediction equations 

(GMPEs) have extended their spectral estimations to periods well above those in previous 

GMPEs (e.g. Boore and Atkinson, 2008; Campbell and Bozorgnia, 2008; Akkar and Bommer, 

2007; Faccioli et al., 2004; Cauzzi and Faccioli, 2008).  Furthermore, direct estimation of 

peak nonlinear oscillator displacements through GMPEs requires the specification of ground 

motion at long periods (e.g. Tothong and Cornell, 2006; 2008, Akkar and Küçükdoğan, 2008; 

Borzi et al., 2001).  

 

The main obstacle to obtaining long-period ground motions is the noise in accelerometer 

records.  By “noise” we mean any distortion to the signal that can lead to apparent errors in 

long-period motions when analyzed in the usual way.   The source of the “noise” can be true 

ground motion due to dynamic rotation and tilting produced by wave propagation, inelastic 

motions due to local ground failure,   amplitude-dependent transducer behavior, or even 

analog-to-digital conversion (e.g., Boore, 2003).  It is not necessarily distributed in a 

stationary manner throughout the record, but can be confined to narrow-duration segments of 

the time series.   This noise is embedded in records from both analog and digital 

accelerographs, although the character of the noise is usually different for the two types of 

records, as discussed by Boore and Bommer (2005) in detail (Figure 1).  The noise is easiest 
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to see in displacement time series, where it most often takes the form of wavering, difficult-

to-characterize motions in analog records.  In digital records, however, the noise is generally 

much easier to describe:  it appears as a drift in displacement, corresponding to one or several 

linear trends in velocity.   The velocity does not approach zero at the end of the record, which 

is impossible on physical grounds.  The form of the noise in digital records suggests that it is 

due small variations in the acceleration baseline, often occurring as near-instantaneous shifts 

in the baseline level.  

 

The strategies for dealing with the long-period noise ranges from doing nothing to trying 

to correct for the baseline offsets.  In the do-nothing case, measures of ground-motion 

intensity are computed from the zeroth-order-corrected (zoc) acceleration record 

(corresponding to a mean being removed from the record, the mean being from the pre-event 

portion of the record, usually available for digital recordings, or the whole record if not 

available), with the assumption that the noise only affects periods greater than a certain period 

( MAXT ). If a precise description of the noise exists, then it is possible, at least in theory, to 

correct for the noise and recover signal at long periods [e.g. Boroscheck and Legrand (2006) 

and Pillet and Vireux (2007) proposed methods to recover the true ground motion using   

models of tilt].  If such a description does not exist (as is usually the case for analog records), 

then low-cut filtering, with or without removal of low-order polynomials fit to the data, is the 

most commonly used adjustment method (Lee et al., 1982)[in such a case "correction" is too 

strong a term, for no correction is being made for the noise; both the signal and the noise are 

lost for periods greater than some fraction of the filter period and consequently true ground 

motion cannot be described (Trifunac and Todorovska, 2001)].  The polynomial fits are a 

form of baseline adjustments and as such amount to some type of low-cut filtering, although 

the equivalent filter is poorly defined in terms of the frequency response.  For all cases of 

filtering with or without baseline adjustment, good practice involves the specification of a 

maximum period ( MAXT ) above which the response spectra should not be used in engineering 

analyses or development of ground-motion prediction equations; MAXT  is usually taken as a 

fraction of the filter period (e.g., Abrahamson and Silva, 1997; Akkar and Bommer, 2006)  

 

The use of TMAX to decide whether or not response spectral ordinates are to be used in 

analyses is equivalent to assuming no error in the response spectra for periods less than TMAX, 

and infinite error for periods greater than TMAX.  This assumption is one of the motivations for 



 4

this paper--we investigate a method for determining the error in the response spectra as a 

function of period, thinking that in future studies response spectra could be used without 

assuming a binary nature of the spectra--either usable or not usable.  (A matter of terminology 

here: as we will be concerned only with long-period response spectra, we will be discussing 

and illustrating elastic, ESD , and inelastic, IESD , displacement response spectra; SD  with no 

subscript is assumed to be elastic displacement response).  In this paper we exploit what 

appears to be a common model of the noise:  the velocity is often quite linear after the strong 

shaking subsides.  A linear trend in velocity implies that any baseline variations must have 

occurred before the start of the linear trend.  Our original goal was to define a period-

dependent dispersion measure for records for which this noise model applies (and this means 

that from now on we will be concerned with the noise in digital records only).   Our approach 

is to do Monte Carlo simulations for several models of the acceleration baseline variations, 

subject to two constraints: 1) these variations take place in a specified time interval and 2) the 

integrated effect of the offsets match the long-period trends after the specified time interval.   

We found that even though the simple noise model applies to many records, we were not 

successful in estimating a robust, noise-model-independent estimate of the dispersion in the 

long-period portion of the response spectra.   On the other hand, for many records the mean 

residual displacement ( RSDLd ) and the mean displacement response spectrum at long period is 

relatively stable and independent of the noise model.  Thus our contribution in this paper is 

actually a Monte Carlo-based baseline-correction method that can be used to give some 

confidence in spectral displacements at periods longer than would normally be considered 

(and longer than for records for which only a zeroth-order-correction had been made).  In 

addition, our results can be used to help define MAXT , and we describe a robust way of 

determining some critical times in the modified Iwan baseline-correction (blc) method that is 

useful even if our Monte Carlo correction method is not used. 

 

 

Determination of Times for Modified Iwan BLC 
 

Our investigation is founded in the Iwan et al. (1985) baseline adjustment procedure for 

removing long-period noise from accelerograms.  Even though we do not apply their method 

directly in this paper, we find it useful to discuss their method, as many of its features are 

used in our analysis.   In addition, we propose a way of choosing constraints on some times 
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that are essential components of the Iwan et al. (1985) method as generalized by Boore 

(2001).    The method assumes that variations in the acceleration baseline are confined to 

times between 1t  and 2t , where 2 1>t t .   This differs from previous baseline correction 

procedures that assumed the noise to be distributed throughout the acceleration time series. 

Although complex baseline variations can occur between these two times during the interval 

of strong ground shaking, the accumulated effect of these variations is represented by a single 

average offset in the baseline, am (Figure 2).  This offset is then followed by another constant 

offset fa extending from 2t to the end of the record.   This second offset can be determined 

either by fitting a line to the velocity obtained from a single integration of the zeroth-order-

corrected (zoc) acceleration (hereinafter called the “zoc velocity”) or by fitting a quadratic to 

the zoc displacement (computed by double integration of the zoc acceleration).   In either 

case, the fit is done using a least-squares fit to the appropriate time series between beginning 

and ending times tFITb and tFITe (determining a baseline correction by fitting a portion of the 

record was first advocated by Graizer, 1979).   Thus there are four times to be specified in the 

Iwan et al. (1985) correction procedure: 1t , 2t , tFITb, and tFITe.   The time tFITe is usually chosen 

to be the end of the record (tFITe = tEND) whereas  tFITb is set subjectively to a time well after 

the strong shaking has subsided (we will discuss shortly a less subjective procedure for 

choosing tFITb).   Iwan et al. (1985) chose 1t  and 2t based on laboratory testing of the specific 

instrument with which they were concerned;   Boore (2001) generalized their method by 

allowing 1t  and 2t  to be free parameters, subject to the constraints that 1 0>t , 2 1>t t  and t2 < 

tEND.  A particularly simple end-member of this generalization assumes a single offset at a 

time ( 0Vt ) given by the intersection of the line fit to the final portion of the zoc velocity with 

the zero axis, in which case 1 2 0Vt t t= = .  This further modification to Iwan et al.’s original 

method is termed by Boore (2001) the "v0 correction.”   Boore (2001) showed that the 

residual displacements (the essentially flat level of the displacement time series near the end 

of the record, which might be interpreted as the co-seismic displacement of the ground due to 

slip on the fault) can be sensitive to 2t , leading him to be pessimistic about the general ability 

of the modified Iwan method to remove long-period noise (Figure 3).  This was contrary to 

the finding for the Chi-Chi earthquake that the residual displacements derived using the 

modified Iwan procedure, usually the v0 correction, were in good overall agreement with the 

coseismic displacements from GPS (e.g. Oglesby and Day, 2001; Wu and Wu, 2007; see also 

Figure C.4 in Boore and Atkinson, 2007, which shows that double integration of the TCU074 



 6

record without any baseline correction yields residual displacements close to those from the 

GPS measurements).  What Boore (2001) did not consider is that there is a constraint on 2t :  it 

cannot be greater than the time beyond which the zoc velocity is essentially linear.  In this 

paper we take advantage of this constraint to determine the maximum time, tBLe, for 2t ; values 

of 2t beyond tBLe would imply a nonlinear zoc velocity, contrary to the way that tBLe is 

determined (“BLe” stands for “BaseLine end”: the end of the time interval in which baseline 

variations can take place).   In a similar way, we define tBLb as the time before which there are 

no obvious baseline variations; this sets the minimum time for 1t  (“BLb” stands for “BaseLine 

beginning”).  With tFITe = tEND, we now have two times to determine:  tBLe and tFITb.  We 

discuss the determination of these times in the rest of this section, starting with tFITb. 

 

tFITb should be chosen well after the strong shaking has ceased, but if chosen too close to 

the end of the record the fitted function will be sensitive to the value of tFITb and thus will not 

provide a robust and stable estimation of the noise trend (but if little post-event record is 

available, the whole procedure we discuss here is compromised, as then it will not be possible 

to find a reliable trend due to noise).   We use an iterative procedure to determine tFITb.  We 

start by choosing tFITb  to be an increment ∆  less than tFITe, and then we find fa  by fitting 

either a first-order polynomial to zoc velocity or a second-order polynomial to zoc 

displacement (we illustrate the procedure here with fits to zoc velocity because it is easier to 

visualize, but we found that the residual displacements are flatter when determined from zoc 

displacement, and thus we used fits to zoc displacement in the next section).  We then reduce 

tFITb by ∆  and determine a new fa .  Thus, for example, for iteration i  we fit 0, ,= +i i f iv v a t  to 

zoc velocity from tFITb = tFITe - i∆ to tFITe.   We plot the ratios of consecutive slopes 

( , 1 ,+f i f ia a ) against tFITb.  The time at which these ratios attain a relatively constant level of 

unity is taken as the value of tFITb for subsequent analysis.    Note that we are not trying to 

determine if a linear trend is the best model for the later part of the zoc velocity; we assume 

that it is.  This is probably a poor assumption for very long records, because other noise 

sources not related to the earthquake of interest can introduce variations in the acceleration 

baseline.  In such cases tFITe should be chosen at a time less than tEND. We realize that there 

may be more sophisticated statistical procedures to accomplish our goal of finding a robust fit 

to the noise trend, but what we have described is simple, intuitive, and seems to work. 
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We determine tBLe on the basis of increasing variations of the zoc velocity from the line 

corresponding to tFITb, working toward decreasing time from tFITb.  The idea here is to find the 

time beyond which the zoc velocity has little variation about a linear trend, implying that 

there is little change in the ground shaking.   We again use an iterative procedure, extending 

the line fitted to zoc velocity from tFITb (determined in the previous paragraph) towards 

decreasing time in increments of ∆ .   We plot the standard deviations between the fitted line 

and the zoc velocity for the time interval [tFITb - i∆,tFITb] as a function of tFITb - i∆.  We set tBLe 

as the value of tFITb - i∆ for the iteration where there is an abrupt increase in the standard 

deviation (baseline variations could occur for earlier times than tBLe).   It is important to 

emphasize that the time 2t in the modified Iwan et al. baseline correction procedure is not 

necessarily equal to tBLe; all we can say is that t2 ≤ tBLe.   The determination of tBLb is similar to 

that for tBLe.  In this case the trend of the zoc velocity with respect to which the standard 

deviation is computed is simply the zero line, as visual inspection of the zoc velocity usually 

shows little or no divergence from a value of 0.0 for times less than the P-wave arrival.  The 

iterations proceed in a forward fashion, so that the time interval used for the standard 

deviation computation is [ ]0, i∆ . 

 

An illustration will help clarify our procedure.   Figure 4 shows these iterative steps by 

using the EW component of the TCU068 station from the 1999 Chi-Chi, Taiwan earthquake.  

The zoc velocity (top graph) shows a physically unrealistic, monotonically increasing linear 

trend after the strong pulse that dominants the waveform.  The second graph shows the slope 

ratios of the iterative straight line fits (i.e., , 1 ,+f i f ia a ) for various choices of tFITb, in 

increments of 1 s (∆ = 1 s).  The ratios diverge from unity for times greater than 63 s, and thus 

tFITb is taken as 63 s for this record.  The third graph shows the standard deviation 

computations as a function of tBLe.  There is an abrupt change in the standard deviation for 

times less than about 43.0 s (note that this time also corresponds to the divergence of 

, 1 ,+f i f ia a from unity for decreasing times, which may be an alternative way of determining 

tBLe).   A change of slope in zoc velocity, corresponding to a baseline offset, does not 

necessarily occur at this time, but natural swings in the velocity due to true ground motion 

obscure any slope changes for times less than tBLe; what we can say is that any changes in 

slope after tBLe are small, and thus tBLe is an upper bound for the time interval in which 

baseline variations can occur.   The bottom graph shows the basis for determining tBLb.  The 

standard deviation has an abrupt increase starting at about 31.0 s, and thus we chose tBLb as 
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this time.  Based on this analysis, for this record the maximum time interval in which baseline 

variations in acceleration might occur is 31.0 s to 43.0 s.   In the next section we discuss a 

baseline correction scheme that makes use of this interval as a constraint on the corrections.  

 

Clearly choosing tBLb and tBLe does involve subjective judgment as to when the standard 

deviations increase rapidly.  We note that there are small increases in the standard deviations 

before and after the times we chose for tBLb and tBLe.  These increases are associated with the 

P-wave arrival and the decreasing coda for tBLb and tBLe, respectively.  We ignore these, 

looking for more rapid increases in the standard deviations. 

 

  

Baseline Corrections and Estimation of Elastic Spectra and Dispersion for Four 

Noise Models 
 

Using the results from the previous section, we have constraints on the time interval in 

which baseline variations could have taken place, as well as the important constraints of the 

final offset, fa , and the integrated value of all baseline variations at time tBLe (v(tBLe): the 

equation of the line fit to the zoc velocity evaluated at t = tBLe).  To proceed farther, however, 

requires specific models for the baseline variations that could have occurred within the [tBLb, 

tBLe] time interval.    Our procedure is to consider four increasingly complex models of the 

variations.  For each model we generate random variations consistent with the constraints, and 

for each simulation we correct the zoc acceleration by subtracting the negative of the 

acceleration baseline offsets, after which we compute baseline-corrected velocities, 

displacements, and response spectra.  We then compute the arithmetic mean of the 

displacements to estimate peak displacements ( PGD ) and residual displacements and the 

geometric mean of the displacement response spectra to obtain a robust estimate of SD  at 

long periods.  Our initial goal was to derive a good estimate of the uncertainty in PGD and 

SD , but we found those quantities to be dependent on the noise model.  We did find, 

however, that often the mean PGD  and SD  are relatively insensitive to the noise model, in 

which case we have confidence in the baseline-corrected mean values from our procedure.  

This was an unintended success that was not the prime motivation for doing this study.  

  

The four noise models used in our study are shown in Figure 5.  The first model (M1) 
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assumes a single constant offset in the acceleration baseline between tBLb and tBLe whose 

location and amplitude is determined by implementing the v0 correction.  The second model 

(M2) is the baseline variation model of Paolucci et al. (2008), with a ramp baseline offset over 

the time interval [ ]1 2,r rt t .  The third model (M3) assumes an constant average drift ( 1ma ) over 

a time interval [ ]1 2,r rt t .  The last model (M4) is a more complex version of M3 having two 

consecutive constant offsets ( 1ma  and 2ma ) between the intervals [ ]1 2,r rt t  and [ ]2 3,r rt t .  Some 

of the key parameters necessary for each baseline-variation model are determined in a random 

manner through Monte Carlo simulations, assuming a normal distribution of the random 

variables, with the other parameters determined by the constraints mentioned above (the rules 

implemented for determining these parameters are presented in Figure 5 next to each model 

plot).   

 

To implement the procedure, we used the ground motions presented in Table 1.  We 

chose these records for several reasons:  the 1999 Chi-Chi records are large amplitude and are 

known to have linear trends in the zoc velocity; the other records, from earthquakes in 

Turkey, are smaller in amplitude but also have linear trends in velocity (see Akkar et al., 

2005, for an in-depth analysis of the Bingöl record).  For each record we determined BLbt ,  

BLet , fa , and ( )BLev t .  These were held fixed (the times are listed in Table 1).  The M1 model 

was entirely determined from these values. For the other models we performed Monte Carlo 

simulations to determine baseline offsets for a suite of 100 realizations; Figure 6 shows a set 

of these realizations for the TCU076-EW record.  We then corrected the zoc acceleration by 

subtracting the negative value of each baseline offset, and then computed the velocity and 

displacement time series and the response spectrum, as well as the means as described above.  

We note that each simulation satisfies the physical condition that the final baseline-corrected 

velocity averages to zero.   Figures 7, 8, and 9 show some examples of the estimated ground 

displacements, 5%-damped response spectra ( ESD ) and corresponding dispersion from the 

Monte Carlo simulations.  Spectral displacements are computed up to a period of 500 seconds 

to cover, in a practical sense, the full effect of long-period noise and to capture the peak 

ground displacement (see also the Appendix).  The dispersion of the spectra is described by 

the standard deviation of natural logarithm of ESD .  The figures illustrate increasing 

sensitivity to the noise models, with the records least and most sensitive to the noise models 

shown in Figures 7 and 9, respectively.  For comparison, the figures include the zoc 
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displacements and ESD , as well as the mean displacements and ESD .    In looking at the 

figures it is useful to keep in mind that the long-period ESD is controlled by PGD , as 

discussed in the Appendix.  This means that the variability in the long-period ESD is directly 

related to the variability of PGD , as can be seen by comparing the bottom graphs in each 

figure with the PGD variability shown by the short horizontal gray line.    We see that the 

variability of ESD  increases rapidly with period, usually attaining a plateau for periods 

beyond about 100 s.   The variability of ESD  also increases with the complexity of the source 

model, which means that we cannot attain our initial goal of characterizing the period-

dependent uncertainty of ESD . We hoped that such a characterization could be used by 

analysis methods (such as those for obtaining ground-motion prediction equations or 

analyzing the statistics of displacement-based structural response) that could take advantage 

of such period-dependent information, rather than the usual “use/don’t use” methods, for 

which ESD  is assumed to be error free below a certain period and so uncertain above that 

same period as not to be useful.   On the other hand, the mean of both the residuals 

displacements and the long-period ESD are often quite similar for the various noise models, 

which we find encouraging.  This model-independence implies that the Monte Carlo-based 

baseline-correction procedures are giving reliable estimates  of the response spectra at periods 

much longer than would be inferred from the period at which the ESD from the zoc 

acceleration diverges from the ESD from the baseline-corrected accelerations.  Often the 

simplest correction based on the M1 noise model provides results comparable to the more 

complex models. 

 

We present the displacements and ESD for all records in Figures 10 and 11.  The average 

PGD , and their uncertainties, are given in Table 1.  Note that for some cases there are no 

entries for the M1 and M2 noise models because the constraints for these models could not be 

met.  For the Bolu (NS) record the intersection of the velocity line with the zero axis (used in 

the M1 noise model) occurred at negative times.  The blank entries for the M2 model are 

because the signs of the final offset, fa , and the velocity line at tBLe, v(tBLe), were not the 

same, which is a logical impossibility for the model given the constraints on 1rt and 2rt (see 

Figure 5).  The results in Figures 10 and 11 and Table 1 are consistent with the conclusions 

that we drew from the three records analyzed in Figures 7, 8, and 9.    The PGD (and 
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therefore the long-period ESD ) are very similar from noise model to noise model for a number 

of records, and the standard deviation of PGD  (and therefore the long-period ESD ) increases 

with the complexity of the noise model.   

 

The residual displacements (the essentially flat portions of the baseline-corrected 

displacements at late times) usually do not affect the ESD (see the Appendix), but they can be 

important for studies of the slip on faults and can be of engineering interest while evaluating 

the structures near active faults that crop out or come close to the surface, for which 

significant spatial variations in residual displacement can be expected.    The displacements 

can be seen in Figure 10, with the mean values and the variation given in Table 2.  As with 

PGD and long-period ESD , the mean values are often relatively insensitive to the noise 

model.   Table 2 also contains residual displacements from the baseline correction method 

developed for the estimation of permanent ground displacements by Wu and Wu (2007).  

They used a modification of the Iwan et al. (1985) method that chose some of the times using 

subjective judgment in combination with a flatness criterion.  Estimates of coseismic 

displacement from nearby GPS stations are also given in Table 2, along with the distance 

from the GPS station to the accelerograph station.   The Wu and Wu residual displacements 

are often in better agreement with the GPS values than ours.   We assume that their baseline 

corrections were done with no knowledge of the GPS displacements.   But we also point out 

that there can be considerable spatial variation in the GPS values.  This is best seen in Table 

3, which lists the GPS coseismic displacements from four GPS stations located on the 

hanging wall of the 1999 Chi-Chi mainshock rupture surface, at approximately the same 

distance from the fault.   As can be seen in the table, the variation is significant between GPS 

stations separated about the same distance as the GPS station and accelerographs.    Given the 

spatial variability and the fact that residual displacements have little effect on long-period 

ESD , we think that the residual displacement comparisons are of less interest than the peak 

displacement and ESD  comparisons for most engineering purposes.    

 

Long-Period Noise Influence on Nonlinear Spectra 
 

We used the suite of baseline-corrected accelerations to study the variability of inelastic 

response as a function of period, using the M4 noise model.   There are indications from 
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previous studies that inelastic spectra can be sensitive to long-period processing details at 

shorter periods than elastic spectra (e.g., Boore and Akkar, 2003).   We used a nonlinear 

oscillator with 5%-damped elastoplastic hysteretic behavior (i.e. no post-elastic stiffness).  

This hysteretic behavior is widely used for modeling the steel structural systems.  We chose 

an elastic strength to yield strength ratio (i.e. FE/FY) of 4 for the oscillator, which corresponds 

to a moderate-strength structural system.  This type of spectrum is known as constant strength 

spectrum and it is widely used in the seismic performance assessment of structural systems. 

[The reader is referred to ATC (2005) for detailed information about the nonlinear oscillator 

response and types of nonlinear spectrum].  The spectra were computed up to 500 seconds for 

comparison with their elastic counterparts.  The nonlinear oscillator response at each vibration 

period was solved numerically using the Newmark beta method, using β = 1/6 (USDP, 2008). 

Figure 12 compares the elastic (left panel) and inelastic (middle panel) spectral displacements 

together with the corresponding dispersions (right panel) represented as period-dependent 

logarithmic standard deviations.  The comparisons are presented for the M4 noise model 

baseline corrections of 3 particular records (TCU052-NS, TCU076-EW and LDEO375-NS).  

The M4 noise model was chosen because it led to more variability in the response spectra at 

long periods.  As in Figures 7, 8, and 9, we chose the records based on the variability of the 

long-period elastic spectra, with TCU052-NS having the least sensitivity and LDEO375-NS 

having the most sensitivity.  The most important observation from these comparative plots 

(particularly the variability plots in the last column of graphs in Figure 12) is that the 

influence of long-period noise on inelastic response spectrum commences at periods 

significantly shorter than the corresponding elastic system, with several times more 

uncertainty in the inelastic spectra at periods less than 10 s than in the elastic spectra.   The 

standard deviations of both the elastic and the inelastic spectra follow each other very closely 

for periods greater than 10 or 20 s, suggesting that the long-period noise influence is 

approximately the same for very flexible elastic and inelastic systems. This discussion clearly 

indicates that the response to long-period noise is different in elastic and inelastic systems and 

the differences are prominent at the periods of engineering interest.  Therefore, different 

empirical and/or theoretical rules should be used for elastic and inelastic spectra in 

determining the period ranges where the long-period noise influence becomes important.  To 

the best of our knowledge, rules proposed for determining the periods at which long-period 

noise influences the computed peak nonlinear oscillator response do not exist. (There are rules 

for reducing the filter cut-off influence on the computed elastic spectral quantities, such as 

Akkar and Bommer, 2006). In the absence of such rules, researchers investigating predictive 



 13

models for nonlinear response either reduce the spectral period ranges intuitively to decrease 

the likely long-period noise influence from the spectral calculations (e.g. Akkar and 

Küçükdoğan, 2008) or totally ignore this effect in their predictive models (e.g., Tothong and 

Cornell, 2006).   

 

Conclusions 
 

Our main contribution in this paper is a Monte Carlo-based baseline correction 

procedure that can be used to give some confidence in spectral displacements at periods 

longer than normally considered in routine processing.  Our procedure can be used to help 

define the period range of usable spectral displacements and might be used to avoid 

“use/don’t use” decisions in which the spectral displacements are assumed to be error free for 

periods less than some MAXT , yet have infinite error above that period.  In addition, we 

describe a robust way of determining some critical times in the modified Iwan baseline-

correction method.   Our method can be used to assess the relative reliability of different 

recordings.  

 

Our study is based on the observation that the long-period noise in digital accelerograph 

recordings is often in the form of a linear trend in the velocity time series after the strong 

shaking has ceased.   If the long-period noise is due to variations in the acceleration baseline, 

then the linearity of this trend in velocity implies that no baseline variations could have 

occurred after the beginning of the linear trend.  We use this observation to put constraints on 

the time interval in which baseline variations could have occurred, and we use Monte Carlo 

simulations subject to these constraints, for four models of the baseline variations, to find a 

suite of baseline-corrected acceleration time series.  From these we computed velocity and 

displacement time series and elastic and inelastic response spectra.  We find that the means of 

the peak ground displacements, the long-period spectral response, and the residual 

displacements are often relatively insensitive to the noise models used in the simulations,   

giving confidence in the determination of these measures of seismic intensity.   Looked at the 

other way, differences of the mean values from the various noise models would imply that the 

values are not accurate, thus providing a way of judging the accuracy of the baseline 

corrections, at least in a qualitative way.  The simplest baseline-correction procedure, which 

requires no simulations, often gives PGD and SD  that compare well with those values from 
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the simulation-based correction procedures.    SD  computed with the even the most basic 

zeroth-order-correction yields SD  that only diverge from the baseline-corrected SD  at 

periods greater than 10 or 20 s for the records studied here, consistent with the findings of 

Paolucci et al. (2008) and Cauzzi and Faccioli (2008). 

 

The variability of the spectral displacements increases with period, but they are model 

dependent.   The inelastic spectra show more variability than the elastic spectra at short 

periods, indicating that inelastic response spectra may be more sensitive to record processing 

procedures than elastic response spectra.  The level of dispersion of the inelastic spectra 

becomes equal to that of elastic spectra at longer periods, as might be explained by the equal 

displacement rule.  We note that nonlinear oscillator behavior is complex and a detailed 

investigation of the influence of long-period noise on the nonlinear oscillator response is not 

the major objective of our study. For the particular spectrum type (constant strength) and the 

records analyzed, we showed that the nonlinear spectrum can be more vulnerable to long-

period noise for the periods of engineering interest.  Therefore, the reliability of peak 

nonlinear deformation demands due to long-period noise should be treated cautiously.  The 

rules implemented to describe the spectral bands for trustworthy peak elastic response may 

not be appropriate when the oscillator responds beyond the elastic range. 

 

Data and Resources Section 
 

The Chi-Chi records used in this study are provided by the Central Bureau of Taiwan.  

The Turkish records are obtained from the 105G016 project funded by the Turkey Scientific 

and Technical Research Council.  
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List Of Tables 
 

Table 1. 

 

Information about the digital accelerograms used in this study (see Data and Resources 

Section).  The listed time values ( BLbt , BLet , and FITbt ) are from the method discussed and the 

mean peak ground displacements ( PGD ) are computed from the suite of 100 baseline-

corrected accelerograms, for the three baseline-offset noise models M2 through M4.  Only 

one displacement time series is associated with the deterministic noise model M1. 

  
Geometric Mean of PGD (cm) σln(PGD)  Record Mw, Rjb 

(km), 
NEHRP site 

class 

Record 
Length 
(tFITe) 

(s) 

TBLb 
(s) 

TBLe 
(s) 

TFITb 
(s) 

M1 M2 M3 M4 M1 M2 M3 M4 

LDEO0375 (NS)-12/11/99 7.2, 2.6, C 42 11 28 29 32 23 55 64 - 0.249 0.523 0.823 

LDEO0375 (EW)-12/11/99 7.2, 2.6, C 42 11 27 29 32 26 16 35 - 0.194 0.443 0.500 

BOLU (NS)-12/11/99 7.2, 10.3, D 56 8.5 19 41 - - 38 38 - - 0.018 0.023 

BOLU (EW)-12/11/99 7.2, 10.3, D 56 8.5 19 40 22 - 21 21 - - 0.002 0.002 

BINGOL (NS)-01/05/03 6.5, 5.7, C 65 20 28 46 27 27 27 27 - 0.000 0.006 0.008 

BINGOL (EW)-01/05/03 6.5, 5.7, C 65 20 28 45 10.4 - 9.3 9.4 - - 0.023 0.026 

TCU052 (NS)-20/09/99 7.6, 0.0, C 90 28 52 70 720 718 721 713 - 0.003 0.006 0.022 

TCU052 (EW)-20/09/99 7.6, 0.0, C 90 30 40 70 497 495 498 491 - 0.002 0.008 0.024 

TCU068 (NS)-20/09/99 7.6, 0.0, C 90 29 43 68 854 854 866 865 - 0.000 0.022 0.040 

TCU068 (EW)-20/09/99 7.6, 0.0, C 90 31 43 63 710 711 705 713 - 0.002 0.014 0.024 

TCU076 (NS)-20/09/99 7.6, 2.8, C 90 24 46 63 72.6 72.6 72.5 75.9 - 0.000 0.019 0.142 

TCU076 (EW)-20/09/99 7.6, 2.8, C 90 21 50 66 154 148 159 141 - 0.034 0.090 0.190 

TCU102 (NS)-20/09/99 7.6, 1.5, C 90 24 57 70 115 115 117 115 - 0.000 0.034 0.034 

TCU102 (EW)-20/09/99 7.6, 1.5, C 90 24 53 71 159 159 158 160 - 0.002 0.005 0.017 

TCU129 (NS)-20/09/99 7.6, 1.8, C 90 24 48 66 74.3 67 79.1 71.7 - 0.100 0.131 0.297 

TCU129 (EW)-20/09/99 7.6, 1.8, C 90 24 52 65 127 127 126 151 - 0.004 0.040 0.297 
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Table 2. 

 

Arithmetic mean and coefficient of variation (COV) for the residual displacements from the 

suite of 100 baseline-corrected accelerograms, for the three baseline-variation noise models 

M2 through M4.  Only one displacement time series is associated with the deterministic noise 

model M1.   The mean residual displacements of Wu and Wu (2007), co-seismic 

deformations from GPS measurements (Yu et al., 2001), and distance between the GPS and 

the accelerograph station are given in the last three columns for comparison. 

 

 
Arithmetic Mean of 

Residual Displacement (cm) 
Abs(COV) of residual 

displacement 
Mean Residual 
Displacement 

(cm) 

Record 

M1 M2 M3 M4 M2 M3 M4 (Wu and Wu, 
2007)  

GPS 
Displacement 

(cm) 

GPS-
Accelerograph 

Station 
Separation 

(km) 

LDEO0375 (NS)-12/11/99 28 15 52 29 0.931 0.870 4.160       
LDEO0375 (EW)-12/11/99 26 24 35 16 0.210 0.500 2.320       
BOLU (NS)-12/11/99 - - 8.2 8 - 0.170 0.210       
BOLU (EW)-12/11/99 6.6 - 5.6 5.7 - 0.040 0.050       
BINGOL (NS)-01/05/03 7.9 7.9 8.3 8 0.000 0.050 0.070       
BINGOL (EW)-01/05/03 8.5 - 3.3 3.4 - 0.070 0.080       
TCU052 (NS)-20/09/99 650 646 652 635 0.003 0.013 0.060 688 845 2.7 

TCU052 (EW)-20/09/99 375 384 386 379 0.003 0.010 0.031 358 342 2.7 

TCU068 (NS)-20/09/99 540 576 589 587 0.000 0.035 0.069       
TCU068 (EW)-20/09/99 593 588 582 590 0.003 0.018 0.031       
TCU076 (NS)-20/09/99 10 11 23 5.7 0.445 0.633 6.010 28 32 1.3 

TCU076 (EW)-20/09/99 132 134 146 124 0.037 0.096 0.304 87 88 1.3 

TCU102 (NS)-20/09/99 100 101 105 102 0.000 0.045 0.047 68 66 1.8 

TCU102 (EW)-20/09/99 66 64 63 65 0.006 0.025 0.093 87 59 1.8 

TCU129 (NS)-20/09/99 55 47 58 32 0.140 0.216 1.583   32 2.1 

TCU129 (EW)-20/09/99 99 109 97 130 0.041 0.183 0.596   88 2.1 
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Table 3. 

 

Variability in the 1999 Chi-Chi mainshock co-seismic displacements from closely located 

GPS stations.  The four stations are on the hanging wall of the fault and are all about the same 

distance from the surface rupture of the fault (GPS values from Yu et al., 2001) 

 

GPS Station Distance from AF27 (km) N Displacement (cm) E Displacement (cm) 

AF27 0.0 411 -428 

M314 2.1 504 -513 

AF25 4.3 535 -401 

M345 6.1 649 -606 
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Figure 1.  Different characteristics of long-period noise in the analog (left panel) and digital 

(right panel) accelerograms.  Both accelerograms are zeroth-order-corrected: the mean of the 

entire record is removed from the analog accelerogram, whereas the mean of the first 15 

seconds is subtracted from the whole accelerogram in the digital recording.   
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Figure 2.  Description of important parameters in the modified Iwan method.  The linear 

trend in the final segment of the velocity derived from the zeroth-order-corrected acceleration 

is the common feature of long-period noise observed in many digital accelerograms.  The 

complex baseline variations are assumed to take place between times t1 and t2 and their 

cumulative effect is represented by a single acceleration shift am. The acceleration shift 

between times t1 and t2 is followed by another constant offset, af, that is determined by a 

linear line fitted to the zoc velocity.  The linear fit is done between the time interval [tFITb, 

tFITe] where, in general, tFITe is taken as the end of the record (tEND).  In the modified Iwan 

method, t1 and t2 can take values between the interval [tBLb, tBLe] provided that t2 > t1. A 

proposed methodology for the determination of the times tFITb, tBLb and tBLe is presented in the 

text.     
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Figure 3.  Displacements obtained from double integration of acceleration after baseline 

correction using the modified Iwan method, for three values of the parameter 2t .  The GPS 

station providing the estimate of co-seismic residual displacement was 2.1 km from the 

recording station TCU129. (We made no attempt to choose 2t so that the residual 

displacement matched the GPS value, although it is obvious that such a value could have been 

found, probably near 40 s.) 
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Figure 4.  Illustration of the iterative procedure for choosing times needed in our simulation-
based baseline-correction procedure, using the TCU068-EW record.  The upper graph shows 
the velocity derived from the zeroth-order-corrected acceleration (“zoc velocity”) and the time 
values to be used in our baseline-offset simulations, as computed from the iterative method.    
The second graph displays slope ratios of straight lines fitted iteratively to the zoc velocity 
time series between the times FITbt and tEND (see text).  Each point corresponds to the slope 
ratio between the consecutive iterations. The iterations used a series of tFITb decreasing in 
value (i.e., working toward the beginning of the record from the end). The time at which these 
ratios attain a relatively constant level of unity suggests the preferred location of tFITb.  The 
third and fourth graphs show the basis for choosing tBLe and tBLb: the variation of standard 
deviations of the difference between the zoc velocity and the linear trend determined earlier 
(extending the trend toward decreasing time, starting from tEND) and between the zoc velocity 
and the zero line (extending toward increasing time, starting from the beginning of the record) 
for tBLe and tBLb, respectively.  The rapid change in the standard deviation values suggests the 
location of tBLe and tBLb.  The time, tFITe is taken as the end of the record (tEND). 
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Figure 5.  Representative sketches of acceleration baseline-offset noise models.  The models 

are abbreviated as M1 (Model 1), M2 (Model 2), M3 (Model 3) and M4 (Model4).  In this 

study M1 is the simplest noise model whereas M4 represents the most complex noise model.  

The parameter fa  is the slope of the straight line determined from the final portion of the zoc 

velocity time series (common in all noise models).  Other constraints for establishing the key 

parameters of each noise model are presented on the right hand side of the plots.  
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Model 2 (M2): 
• tr1 is randomly generated between tBLb and tBLe.  
• tr2 = -2×v(tBLe)/af + (2 tBLe - tr1) 
• Constraints: tr2 > tr1 and tr2 < tBLe 

Model 3 (M3): 
• tr1 is randomly generated between tBLb and tBLe.  
• am1 is randomly determined (|am1| ≤ 2af) 
• tr2 = 1/(am1 - af) ×(v(tBLe) + am1×tr1 - af×tBLe); 
• Constraints: tr2 > tr1 and tr2 < t2 

Model 4 (M4): 
• tr1 and tr2 are randomly generated between tBLb and tBLe.  
• am1 and am2 are randomly determined (|am1| ≤ 2af, |am2| ≤ 2af) 
• tr3 = 1/(am2 - af) ×(v(tBLe) - am1×tr2 + am1×tr1 + am2×tr2 - af×tBLe); 
• Constraints: tr2 > tr1 and tr2 < tBLe 

t 
Model 1 (M1): 
• tr1 = -v0/af  
• Constraints: tr1 > tBLb 
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Figure 6.  An illustrative case of the Monte Carlo simulations for the acceleration baseline-

offset noise models considered in this study.  100 simulations are shown.  The offset for the 

deterministic noise model M1 (for which there is no random variability) is superimposed in 

all plots for comparative purposes.  
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Figure 7.  Estimated ground displacements (upper row) and elastic displacement spectra 
( ESD ) (middle row) corresponding to baseline corrections computed using the Monte Carlo 
(MC) simulations of acceleration baseline variations, for the EW component of TCU102.  The 
graphs in the last row show the period-dependent standard deviations of the logarithm of 

ESD .  Columns from left to right show the simulation results of noise models 2, 3 and 4.  The 
simulations are in dark grey.  The ground displacement and spectrum plots also display the 
results for the zoc acceleration (dotted) (for which ESD  is almost the same as for the M1 
model), the mean of the Monte Carlo simulations (black solid line), and the results from the 
simplest noise model M1 (dashed black lines, invisible in this case as they are covered by the 
black solid lines).   The horizontal gray line in the bottom row of graphs is ln( )PGDσ . The 
record used in this example does not possess a significant dependence of ESD on the noise 
mode.   
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Figure 8. Similar to Figure 7, but using the EW component of TCU129.  The record used in 
this example has a moderate dependence of the long-period ESD  on the noise model. (Note 
that the curves pertaining to Model 1 are not visible in many panels as they are covered by 
black solid lines). 
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Figure 9.  Similar to Figure 7, but using the EW component of LDEO375.  The record used in 
this example has a significant dependence of the variability of long-period ESD  on the noise 
model. 
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Figure 10.  The displacement time series from the baseline-corrected accelerations for the 

entire dataset. Gray lines show the result from the baseline corrections obtained using the 

Monte Carlo simulations, black solid lines define the mean variation of the gray lines, and 

black dashed lines display the ground displacements for noise mode M1.  The zoc 

displacements are given by the dotted lines. Some available GPS co-seismic deformation 

measurements are shown by heavy black horizontal line segments (although as discussed in 

the text, the GPS stations are not collocated with the accelerograph stations, and significant 

spatial variation in the residual displacements can exist).  
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Figure 11.  Variations in the elastic spectral displacements ( ESD ) from the baseline-corrected 

accelerations due to different noise models, for the entire data set.  Dark gray lines show the 

result from the baseline corrections obtained using the Monte Carlo simulations,  black solid 

lines are the means of the ESD  from the baseline-corrected accelerations,  and black dashed 

lines display ESD  for noise model M1.  The plots also display the zoc ESD as dotted lines. 
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Figure 12.  Comparisons of elastic (left panel) and inelastic (middle panel) spectral 

displacements from the baseline-corrected accelerations using the M4 noise model. Each row 

displays the results from a particular record with different levels of sensitivity to the noise 

model. The results using the M4 baseline corrections are shown in dark gray (results are 

shown for 100 simulations). The solid black lines in the spectral plots represent the mean of 

the M4 results whereas the dashed black lines and dotted curves show the results of the 

spectral displacements using the M1 and zoc baseline corrections, respectively.  The 

rightmost panel gives the period-dependent elastic (gray) and inelastic (black) dispersions 

(standard deviations of the natural logarithm of simulated spectral displacements) for each 

record. 
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Appendix 
 

The Relation of Variations in Displacements to Those in Long-Period 
Displacement Response Spectra 

 
 

The residual displacement of an accelerogram can be sensitive to the correction used to 

remove the noise due to baseline changes in the acceleration time series.   Large variations in 

residual displacements for a given acceleration time series, however, do not necessarily 

appear as corresponding variations in long-period elastic displacement response spectra ( SD ) 

of the baseline-corrected (blc) accelerograms.  At first thought this might seem paradoxical, 

but it must be recalled that the long-period displacement response spectral ordinates are equal 

to the peak ground displacement ( PGD ) corresponding to the acceleration time series used to 

compute the response spectrum.  Thus the SD s for a suite of corrections for a given 

accelerogram would have little or no variation at long periods if the peak displacement had 

little dependence on the correction procedure, even if the residual displacements showed 

considerable variation.  Some examples will make this clear.  Figure A1 shows zeroth-order-

correction (zoc) and blc displacements and the corresponding SD .   The zoc displacement 

diverges from the later part of the blc displacement, but because it trends upward, the peak 

displacement is the same for both time series.  As a result, the SD for both time series is the 

same.   If the zoc displacement had turned down, rather than up, the PGD would be different 

and this would show up as a difference in SD . This is what happened for the example shown 

in Figure A2.  The zoc displacement trends downward, the peak displacement is for the two 

time series are different, and there are differences in the long-period SD .  A final example is 

given in Figure A3, in which the zoc displacement again trends downward, but because the 

peak displacement on the blc record is positive, the negative displacement of the zoc 

displacement at the end of the record is still less in absolute value (100 cm) than the peak 

positive displacement (150 cm), and thus the SD shows no difference for the two time series.  

 

The realization that it is the PGD that controls the long-period SD makes it easy to look at the 

displacement plots for a series of baseline corrections applied to a given record and predict 

whether there will be much effect on SD .   For example, Figure A4 shows the blc  

displacements and the SD for our noise model 4, for TCU052 NS:  the range of residual 

displacements is about a factor of 1.5, but the range of long period SD is about a factor of 
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1.15 because the PGD is little affected by the various baseline corrections.   This can be 

contrasted with this case shown in Figure A5, but even here the variation of SD is much 

smaller than the variation of residual displacements.     The comparisons in Figure A5 also 

explain why the distribution of long-period SD can be so nonsymmetrical about the mean 

value:  only those displacement time series for which the residual displacements are equal or 

greater to the earlier PGD will show up as increases in the long-period part of the SD .  Many 

of the residual displacements in Figure A5 reduce PGD slightly, if at all, and thus there is a 

mass of SD values near or slightly below the mean SD at long periods.  The outliers, with 

either large positive or negative residual displacements, all contribute to long-period 

SD above the mean value. 

 

An additional topic is what to expect for motions with significant near- and intermediate-field 

terms?  If the complete waveform is thought of as the sum of a portion without a near-field 

ramp-like step (the “far-field” displacement) and a portion with a ramp-like step (the “near- 

and intermediate-field” displacements), and if the step starts near the beginning of the motion 

and has a rise time comparable to the strong motion duration, as seems reasonable from 

physical grounds, then the time of the peak far-field displacement will correspond to a portion 

of the step rise function that is well below its maximum offset.  Thus the range of the peak 

displacement for a series of residual offsets will be less than the variation in the residual 

displacements, and for this reason the SD will show less variation than for the residual 

displacements. 

 

In conclusion: if the PGD varies little for different baseline corrections applied to a given 

accelerogram, there will be little variation in SD , even if the residual displacements are very 

different for the suite of corrections. 
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Figure A1. Zoc and v0-corrected displacements and the corresponding 5%-damped elastic 

displacement response spectra for a record for which there is no discernable variation in the 

long-period spectral response. 
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Figure A2. Zoc and v0-corrected displacements and the corresponding 5%-damped elastic 

displacement response spectra for a record for which there is a small variation in the very 

long-period spectral response. 
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Figure A3. Zoc and v0-corrected displacements and the corresponding 5%-damped elastic 

displacement response spectra for a record for which there is no discernable variation in the 

very long-period spectral response, although the displacement wave forms differ significantly. 
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Figure A4. (gray) A series of baseline-corrected displacements and the corresponding 

response spectra; (black) the mean of gray curves.  The small amount of variation in peak 

ground displacement leads to a correspondingly small amount of variation in the long-period 

response spectra, although there is a large variation in residual displacements. 
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Figure A5. (gray) A series of baseline-corrected displacements and the corresponding 

response spectra; (black) the mean of gray curves.  The large variation in peak ground 

displacement leads to a correspondingly large (and asymmetrical) variation in the long-period 

response spectra. 

 

 

 
 
 
 
 
 


